Skip to content Skip to sidebar Skip to footer

Convert Quarterly Dataframe To Monthly And Fill Missing Values In Pandas

For a quarterly dataframe like this: date gdp rate 0 2003/3/1 523.82 0.1 1 2003/6/1 1172.83 0.2 2 2003/9/1 1882.48 0.4 3 2003/12/1 3585.72 0.1 4

Solution 1:

Another solution is create DatetimeIndex, then use DataFrame.asfreq with method='bfill' and MS for start of month and last convert to periods by DataFrame.to_period:

df['date'] = pd.to_datetime(df['date'])
df = df.sort_values(by=['date'], ascending=[True])
df.set_index('date', inplace=True)

df = df.asfreq('MS', method='bfill').to_period('M').reset_index()
print (df)
       date      gdp  rate
0   2003-03   523.82   0.1
1   2003-04  1172.83   0.2
2   2003-05  1172.83   0.2
3   2003-06  1172.83   0.2
4   2003-07  1882.48   0.4
5   2003-08  1882.48   0.4
6   2003-09  1882.48   0.4
7   2003-10  3585.72   0.1
8   2003-11  3585.72   0.1
9   2003-12  3585.72   0.1
10  2004-01   706.77   0.2
11  2004-02   706.77   0.2
12  2004-03   706.77   0.2

Solution 2:

This works:

import pandas as pd

df['date'] = pd.to_datetime(df['date']).dt.to_period('M')
# df['date'] =  pd.to_datetime(df['date'], format='%Y/%m/%d')
df = df.sort_values(by=['date'], ascending=[True])
df.set_index('date', inplace=True)

df = df.resample('M').bfill().reset_index()
print(df)

output:

       date      gdp  rate
0   2003-03   523.82   0.1
1   2003-04  1172.83   0.2
2   2003-05  1172.83   0.2
3   2003-06  1172.83   0.2
4   2003-07  1882.48   0.4
5   2003-08  1882.48   0.4
6   2003-09  1882.48   0.4
7   2003-10  3585.72   0.1
8   2003-11  3585.72   0.1
9   2003-12  3585.72   0.1
10  2004-01   706.77   0.2
11  2004-02   706.77   0.2
12  2004-03   706.77   0.2

Post a Comment for "Convert Quarterly Dataframe To Monthly And Fill Missing Values In Pandas"