Merge Dataframe Object And Timedelta64
I have a dataframe of dtype datetime64 df: time timestamp 18053.401736 2019-06-06 09:38:30+00:00 18053.418252 2019-06-06 10:02:17+00:00 18053.424514 2019-06-06 10:1
Solution 1:
Convert the timestamp to timedelta by subtracting the date part and then merge:
df1 = pd.DataFrame([pd.Timestamp('2019-06-06 09:38:30+00:00'),pd.Timestamp('2019-06-06 10:02:17+00:00')], columns=['timestamp'])
df2 = pd.DataFrame([pd.Timedelta('09:38:30')], columns=['ref_time'])
timestamp
0 2019-06-06 09:38:30+00:00
1 2019-06-06 10:02:17+00:00
timestamp datetime64[ns, UTC]
dtype: object
ref_time
0 09:38:30
ref_time timedelta64[ns]
dtype: object
df1['merge_key'] = df1['timestamp'].dt.tz_localize(None) - pd.to_datetime(df1['timestamp'].dt.date)
df_merged = df1.merge(df2, left_on = 'merge_key', right_on = 'ref_time')
Gives:
timestamp merge_key ref_time
0 2019-06-06 09:38:30+00:00 09:38:30 09:38:30
Solution 2:
The main challenge here is to get everything into compatible date types. Using your, slightly modified, examples as inputs
from io import StringIO
df = pd.read_csv(StringIO(
"""
time,timestamp
18053.401736,2019-06-06 09:38:30+00:00
18053.418252,2019-06-06 10:02:17+00:00
18053.424514,2019-06-06 10:11:18+00:00
18053.454132,2019-06-06 10:53:57+00:00
"""))
df['timestamp'] = pd.to_datetime(df['timestamp'])
from datetime import timedelta
sdf = pd.read_csv(StringIO(
"""
ref_time
0 days 09:00:00
0 days 09:00:01
0 days 09:00:02
0 days 09:00:03
0 days 09:00:04
0 days 09:38:30
0 days 10:02:17
0 days 14:59:56
0 days 14:59:57
0 days 14:59:58
0 days 14:59:59
0 days 15:00:00
"""))
sdf['ref_time'] = pd.to_timedelta(sdf['ref_time'])
The dtypes here are as in your question which is important
First we figure out the base_date
as we need to convert timedeltas into datetimes etc. Note we set it to midnight of the relevant date via round('1d')
base_date = df['timestamp'].iloc[0].round('1d').to_pydatetime()
base_date
output
datetime.datetime(2019, 6, 6, 0, 0, tzinfo=<UTC>)
Next we add timedeltas from sdf
to the base_date:
sdf['ref_dt'] = sdf['ref_time'] + base_date
Now sdf['ref_dt']
and df['timestamp']
are in the same 'units' and of the same type, so we can merge
sdf.merge(df, left_on = 'ref_dt', right_on = 'timestamp', how = 'left')
output
ref_time ref_dt time timestamp
-- --------------- ------------------------- ------- -------------------------
0 0 days 09:00:00 2019-06-06 09:00:00+00:00 nan NaT
1 0 days 09:00:01 2019-06-06 09:00:01+00:00 nan NaT
2 0 days 09:00:02 2019-06-06 09:00:02+00:00 nan NaT
3 0 days 09:00:03 2019-06-06 09:00:03+00:00 nan NaT
4 0 days 09:00:04 2019-06-06 09:00:04+00:00 nan NaT
5 0 days 09:38:30 2019-06-06 09:38:30+00:00 18053.4 2019-06-06 09:38:30+00:00
6 0 days 10:02:17 2019-06-06 10:02:17+00:00 18053.4 2019-06-06 10:02:17+00:00
7 0 days 14:59:56 2019-06-06 14:59:56+00:00 nan NaT
8 0 days 14:59:57 2019-06-06 14:59:57+00:00 nan NaT
9 0 days 14:59:58 2019-06-06 14:59:58+00:00 nan NaT
10 0 days 14:59:59 2019-06-06 14:59:59+00:00 nan NaT
11 0 days 15:00:00 2019-06-06 15:00:00+00:00 nan NaT
and we see the merge happening where needed
Post a Comment for "Merge Dataframe Object And Timedelta64"