Python DataFrame: Transpose One Column Into Multiple Column
I have a dataframe like below: df = pd.DataFrame({'month':['2017-09-27','2017-09-27','2017-09-28','2017-09-29'],'Cost':[100,500,200,300]}) How can I get a df like this: 2017-09-2
Solution 1:
Use cumcount
to compute a "cumulative count" of the items within each group. We'll use these values (below) as index labels.
In [97]: df['index'] = df.groupby('month').cumcount()
In [98]: df
Out[98]:
Cost month index
0 100 2017-09-27 0
1 500 2017-09-27 1
2 200 2017-09-28 0
3 300 2017-09-29 0
Then the desired result can be obtained by pivoting:
In [99]: df.pivot(index='index', columns='month', values='Cost')
Out[99]:
month 2017-09-27 2017-09-28 2017-09-29
index
0 100.0 200.0 300.0
1 500.0 NaN NaN
Solution 2:
Option 1
zip_longest
from itertools import zip_longest
s = df.groupby('month').Cost.apply(list)
pd.DataFrame(list(zip_longest(*s)), columns=s.index)
month 2017-09-27 2017-09-28 2017-09-29
0 100 200.0 300.0
1 500 NaN NaN
Option 2
pd.concat
pd.concat(
{k: g.reset_index(drop=True) for k, g in df.groupby('month').Cost},
axis=1
)
2017-09-27 2017-09-28 2017-09-29
0 100 200.0 300.0
1 500 NaN NaN
Option 3
Similar to @unutbu in that it uses cumcount
. However, I use set_index
and unstack
to do the pivoting.
df.set_index([df.groupby('month').cumcount(), 'month']).Cost.unstack()
month 2017-09-27 2017-09-28 2017-09-29
0 100.0 200.0 300.0
1 500.0 NaN NaN
Post a Comment for "Python DataFrame: Transpose One Column Into Multiple Column"