Python DataFrame: Transpose One Column Into Multiple Column
I have a dataframe like below: df = pd.DataFrame({'month':['2017-09-27','2017-09-27','2017-09-28','2017-09-29'],'Cost':[100,500,200,300]})  How can I get a df like this:  2017-09-2
Solution 1:
Use cumcount to compute a "cumulative count" of the items within each group. We'll use these values (below) as index labels. 
In [97]: df['index'] = df.groupby('month').cumcount()
In [98]: df
Out[98]: 
   Cost       month  index
0   100  2017-09-27      0
1   500  2017-09-27      1
2   200  2017-09-28      0
3   300  2017-09-29      0
Then the desired result can be obtained by pivoting:
In [99]: df.pivot(index='index', columns='month', values='Cost')
Out[99]: 
month  2017-09-27  2017-09-28  2017-09-29
index                                    
0           100.0       200.0       300.0
1           500.0         NaN         NaN
Solution 2:
Option 1
zip_longest 
from itertools import zip_longest
s = df.groupby('month').Cost.apply(list)
pd.DataFrame(list(zip_longest(*s)), columns=s.index)
month  2017-09-27  2017-09-28  2017-09-29
0             100       200.0       300.0
1             500         NaN         NaN
Option 2
pd.concat 
pd.concat(
    {k: g.reset_index(drop=True) for k, g in df.groupby('month').Cost},
    axis=1
)
   2017-09-27  2017-09-28  2017-09-29
0         100       200.0       300.0
1         500         NaN         NaN
Option 3
Similar to @unutbu in that it uses cumcount. However, I use set_index and unstack to do the pivoting.
df.set_index([df.groupby('month').cumcount(), 'month']).Cost.unstack()
month  2017-09-27  2017-09-28  2017-09-29
0           100.0       200.0       300.0
1           500.0         NaN         NaN
Post a Comment for "Python DataFrame: Transpose One Column Into Multiple Column"