Combining Two Different Formats Of Datetime In Pandas
I have many csv files that contain date and time information. Problem is that I have two different formats of date. MM/DD/YYYY HH:MM:SS and MM-DD-YYYY HH:MM:SS I do not want to
Solution 1:
Use pandas.to_datetime before you merge them into one DataFrame/Series.
Solution 2:
Pandas to_datetime
is pretty versatile, it will understand many different formats.
from io import StringIO
d_csv = StringIO("""12/01/2016 01:01:00
12-01-2016 02:02:00""")
d = pd.read_csv(d_csv, header=None)
d[0] = pd.to_datetime(d[0])
print(d)
Output:
002016-12-01 01:01:0012016-12-01 02:02:00
Solution 3:
Try this, (with a function to parse date format)
import pandas as pd
defmyparser(x):
return datetime.strptime(x, '%m/%d/%Y %H:%M:%S' )
df = pd.read_csv(filename, parse_dates=True, date_parser=myparser)
Post a Comment for "Combining Two Different Formats Of Datetime In Pandas"