Separating A Dataframe By Date And Calculating Mathmetical Models Numpy Python
The data_list and the monthly_values array are in correlation with each other, so the data point '2019-09-01 00:00:00'= 15 , 2019-10-01 00:00:00'= 39.6... etc. The year_changes fun
Solution 1:
Try via groupby()
,agg()
,droplevel()
and rename()
:
out=(data.groupby(data["Date"].dt.year)
.agg(['mean','median','max','min'])
.droplevel(0,1)
.rename(columns=lambda x:'Average'if x=='mean'else x.title()))
OR
via pivot_table()
,droplevel()
and rename()
:
out=(data.pivot_table('Averages',data["Date"].dt.year,aggfunc=['mean','median','max','min'])
.droplevel(1,1)
.rename(columns=lambda x:'Average'if x=='mean'else x.title()))
output of out
:
AverageMedianMaxMinDate2019 22.27500024.6539.60.22020 14.15833314.0526.82.32021 18.7428575.0093.9-16.5
Post a Comment for "Separating A Dataframe By Date And Calculating Mathmetical Models Numpy Python"