Convert Columns Of Time In Minutes Format To Time In Hh:mm:ss Format In Pandas
Solution 1:
Per the previous question, perhaps the best thing to do would be to keep the original HH:MM:SS strings:
So instead of
for col in ('arrival_time', 'departure_time'):
df = reindexed[col].str.extract(
r'(?P<hour>\d+):(?P<minute>\d+):(?P<second>\d+)').astype('float')
reindexed[col] = df['hour'] * 60 + df['minute']
use
for col in ('arrival_time', 'departure_time'):
newcol = '{}_minutes'.format(col)
df = reindexed[col].str.extract(
r'(?P<hour>\d+):(?P<minute>\d+):(?P<second>\d+)').astype('float')
reindexed[newcol] = df['hour'] * 60 + df['minute']
Then you don't have to do any new calculations to recover the HH:MM:SS strings.
reindexed['arrival_time']
will still be the original HH:MM:SS strings, and
reindexed['arrival_time_minutes']
would be the time duration in minutes.
Building on Jianxun Li's solution,
to chop off the microseconds, you could multiply the minutes by 60 and then call astype(int)
:
import numpy as np
import pandas as pd
np.random.seed(0)
df = pd.DataFrame(np.random.rand(3) * 1000, columns=['minutes'])
df['HH:MM:SS'] = pd.to_timedelta((60*df['minutes']).astype('int'), unit='s')
which yields
minutes HH:MM:SS
0 548.813504 09:08:48
1 715.189366 11:55:11
2 602.763376 10:02:45
Note that the df['HH:MM:SS']
column contains pd.Timedelta
s:
In[240]: df['HH:MM:SS'].iloc[0]Out[240]: Timedelta('0 days 09:08:48')
However, if you try to store this data in a csv
In [223]: df.to_csv('/tmp/out', date_format='%H:%M:%S')
you get:
,minutes,HH:MM:SS
0,548.813503927,0 days 09:08:48.000000000
1,715.189366372,0 days 11:55:11.000000000
2,602.763376072,0 days 10:02:45.000000000
If the minute values are too big, you would also see days
as part of the timedelta string representation:
np.random.seed(0)
df = pd.DataFrame(np.random.rand(3) * 10000, columns=['minutes'])
df['HH:MM:SS'] = pd.to_timedelta((60*df['minutes']).astype('int'), unit='s')
yields
minutesHH:MM:SS05488.135039 3days19:28:0817151.893664 4days23:11:5326027.633761 4days04:27:38
That might not be what you want. In that case, instead of
df['HH:MM:SS'] = pd.to_timedelta((60*df['minutes']).astype('int'), unit='s')
per Phillip Cloud's solution you could use
import operator
fmt = operator.methodcaller('strftime', '%H:%M:%S')
df['HH:MM:SS'] = pd.to_datetime(df['minutes'], unit='m').map(fmt)
The result looks the same, but now the df['HH:MM:SS']
column contains strings
In [244]: df['HH:MM:SS'].iloc[0]
Out[244]: '09:08:48'
Note that this chops off (omits) both the whole days and the microseconds. Writing the DataFrame to a CSV
In [229]: df.to_csv('/tmp/out', date_format='%H:%M:%S')
now yields
,minutes,HH:MM:SS0,548.813503927,09:08:481,715.189366372,11:55:112,602.763376072,10:02:45
Solution 2:
You may want to consider using pd.to_timedelta
.
import pandas as pd
import numpy as np
np.random.seed(0)
df = pd.DataFrame(np.random.rand(10) * 1000, columns=['time_in_minutes'])
Out[94]:
time_in_minutes
0548.81351715.18942602.76343544.88324423.65485645.89416437.58727891.77308963.66289383.4415
# As Jeff suggests, pd.to_timedelta is a very handy tool to dothis
df['time_delta'] = pd.to_timedelta(df.time_in_minutes, unit='m')
Out[96]:
time_in_minutes time_delta
0548.8135 09:08:48.8102351715.189411:55:11.3619822602.763410:02:45.8025643544.8832 09:04:52.9909794423.654807:03:39.2879605645.894110:45:53.6467846437.587207:17:35.2326757891.773014:51:46.3800468963.662816:03:39.7656309383.441506:23:26.491129
Post a Comment for "Convert Columns Of Time In Minutes Format To Time In Hh:mm:ss Format In Pandas"