Resampling Data - Using Smote From Imblearn With 3d Numpy Arrays
I want to resample my dataset. This consists in categorical transformed data with labels of 3 classes. The amount of samples per class are: counts of class A: 6945 counts of class
Solution 1:
I am considering a dummy 3d
array and assuming a 2d
array size by myself,
arr = np.random.rand(160, 10, 25)
orig_shape = arr.shape
print(orig_shape)
Output: (160, 10, 25)
arr = np.reshape(arr, (arr.shape[0], arr.shape[1]))
print(arr.shape)
Output: (4000, 10)
arr = np.reshape(arr, orig_shape))
print(arr.shape)
Output: (160, 10, 25)
Solution 2:
from imblearn.over_samplingimportRandomOverSamplerimport numpy as np
oversample = RandomOverSampler(sampling_strategy='minority')
X could be a time stepped 3D data like X[sample,time,feature], and y like binary values for each sample. For example: (1,1),(2,1),(3,1) -> 1
X = np.array([[[1,1],[2,1],[3,1]],
[[2,1],[3,1],[4,1]],
[[5,1],[6,1],[7,1]],
[[8,1],[9,1],[10,1]],
[[11,1],[12,1],[13,1]]
])
y = np.array([1,0,1,1,0])
There is no way to train OVERSAMPLER with 3D X values because if you use 2D you will get back 2D data.
Xo,yo = oversample.fit_resample(X[:,:,0], y)
Xo:
[[ 1 2 3]
[ 2 3 4]
[ 5 6 7]
[ 8 9 10]
[11 12 13]
[ 2 3 4]]
yo:
[101100]
but if you use 2D data (sample,time,0) to fit the model, it will give back indices, and it is enough to create 3D oversampled data
oversample.fit_resample(X[:,:,0], y)
Xo = X[oversample.sample_indices_]
yo = y[oversample.sample_indices_]
Xo:
[[[ 1 1][ 2 1][ 3 1]][[ 2 1][ 3 1][ 4 1]][[ 5 1][ 6 1][ 7 1]][[ 8 1][ 9 1][10 1]][[11 1][12 1][13 1]][[ 2 1][ 3 1][ 4 1]]]
yo:
[101100]
Solution 3:
I will create each point for a 2-dim array and then reshape it as 3 dim array. I have provided my scripts. If there is any confusion, comment; please reply.
x_train, y_train = zip(*train_dataset)
x_test, y_test = zip(*test_dataset)
dim_1 = np.array(x_train).shape[0]
dim_2 = np.array(x_train).shape[1]
dim_3 = np.array(x_train).shape[2]
new_dim = dim_1 * dim_2
new_x_train = np.array(x_train).reshape(new_dim, dim_3)
new_y_train = []
for i inrange(len(y_train)):
# print(y_train[i])
new_y_train.extend([y_train[i]]*dim_2)
new_y_train = np.array(new_y_train)
# transform the dataset
oversample = SMOTE()
X_Train, Y_Train = oversample.fit_sample(new_x_train, new_y_train)
# summarize the new class distribution
counter = Counter(Y_Train)
print('The number of samples in TRAIN: ', counter)
x_train_SMOTE = X_Train.reshape(int(X_Train.shape[0]/dim_2), dim_2, dim_3)
y_train_SMOTE = []
for i inrange(int(X_Train.shape[0]/dim_2)):
# print(i)
value_list = list(Y_Train.reshape(int(X_Train.shape[0]/dim_2), dim_2)[i])
# print(list(set(value_list)))
y_train_SMOTE.extend(list(set(value_list)))
## Check: if there is any different value in a list iflen(set(value_list)) != 1:
print('\n\n********* STOP: THERE IS SOMETHING WRONG IN TRAIN ******\n\n')
dim_1 = np.array(x_test).shape[0]
dim_2 = np.array(x_test).shape[1]
dim_3 = np.array(x_test).shape[2]
new_dim = dim_1 * dim_2
new_x_test = np.array(x_test).reshape(new_dim, dim_3)
new_y_test = []
for i inrange(len(y_test)):
# print(y_train[i])
new_y_test.extend([y_test[i]]*dim_2)
new_y_test = np.array(new_y_test)
# transform the dataset
oversample = SMOTE()
X_Test, Y_Test = oversample.fit_sample(new_x_test, new_y_test)
# summarize the new class distribution
counter = Counter(Y_Test)
print('The number of samples in TEST: ', counter)
x_test_SMOTE = X_Test.reshape(int(X_Test.shape[0]/dim_2), dim_2, dim_3)
y_test_SMOTE = []
for i inrange(int(X_Test.shape[0]/dim_2)):
# print(i)
value_list = list(Y_Test.reshape(int(X_Test.shape[0]/dim_2), dim_2)[i])
# print(list(set(value_list)))
y_test_SMOTE.extend(list(set(value_list)))
## Check: if there is any different value in a list iflen(set(value_list)) != 1:
print('\n\n********* STOP: THERE IS SOMETHING WRONG IN TEST ******\n\n')
Post a Comment for "Resampling Data - Using Smote From Imblearn With 3d Numpy Arrays"