Skip to content Skip to sidebar Skip to footer

Attributeerror When Using Columntransformer Into A Pipeline

This is my first machine learning project and the first time that I use ColumnTransformer. My aim is to perform two steps of data preprocessing, and use ColumnTransformer for each

Solution 1:

ColumnTransformer returns numpy.array, so it can't have column attribute (as indicated by your error).

If I may suggest a different solution, use pandas for both of your tasks, it will be easier.

Step 1 - replacing missing values

To replace missing value in a subset of columns with missing_value string use this:

dataframe[["PoolQC", "Alley"]].fillna("missing_value", inplace=True)

For the rest (imputing with mean of each column), this will work perfectly:

dataframe[["Street", "MSZoning", "LandContour"]].fillna(
    dataframe[["Street", "MSZoning", "LandContour"]].mean(), inplace=True
)

Step 2 - one hot encoding and categorical variables

pandas provides get_dummies, which returns pandas Dataframe, unlike ColumnTransfomer, code for this would be:

encoded = pd.get_dummies(dataframe[['MSZoning', 'LandContour']], drop_first=True)
pd.dropna(['MSZoning', 'LandContour'], axis=columns, inplace=True)
dataframe = dataframe.join(encoded)

For ordinal variables and their encoding I would suggest you to look at this SO answer (unluckily some manual mapping would be needed in this case).

If you want to use transformer anyway

Get np.array from the dataframe using values attribute, pass it through the pipeline and recreate columns and indices from the array like this:

pd.DataFrame(data=your_array, index=np.arange(len(your_array)), columns=["A", "B"])

There is one caveat of this aprroach though; you will not know the names of custom created one-hot-encoded columns (the pipeline will not do this for you).

Additionally, you could get the names of columns from sklearn's transforming objects (e.g. using categories_ attribute), but I think it would break the pipeline (someone correct me if I'm wrong).

Solution 2:

Option #2

use the make_pipeline function

(Had the same Error, found this answer, than found this: Introducing the ColumnTransformer)

from sklearn.compose import make_column_transformer
from sklearn.pipeline import make_pipeline
cat_columns_fill_miss = ['PoolQC', 'Alley']
cat_columns_fill_freq = ['Street', 'MSZoning', 'LandContour']
cat_columns_ord = ['Street', 'Alley', 'PoolQC']
ord_mapping = [['Pave', 'Grvl'],                          # Street
               ['missing_value', 'Pave', 'Grvl'],         # Alley
               ['missing_value', 'Fa', 'TA', 'Gd', 'Ex']  # PoolQC
               ]
cat_columns_onehot = ['MSZoning', 'LandContour']

imputer_cat_pipeline = make_column_transformer(
    (make_pipeline(SimpleImputer(strategy='constant'), cat_columns_fill_miss),
    (make_pipeline(SimpleImputer(strategy='most_frequent'), cat_columns_fill_freq),
)

encoder_cat_pipeline = make_column_transformer(
    (OrdinalEncoder(categories=ord_mapping), cat_columns_ord),
    (OneHotEncoder(), cat_columns_onehot),
)

cat_pipeline = Pipeline([
    ('imp_cat', imputer_cat_pipeline),
    ('cat_encoder', encoder_cat_pipeline),
])

In my own pipelines i do not have overlapping preprocessing in the column space. So i am not sure, how the transformation and than the "outer pipelining" works.

However, the important part is to use make_pipeline around the SimpleImputer to use it in a pipeline properly:

imputer_cat_pipeline = make_column_transformer(
    (make_pipeline(SimpleImputer(strategy='constant'), cat_columns_fill_miss),
)

Solution 3:

Just to add to the other answers here. I'm no Python or data science expert but you can pass another pipeline to ColumnTransformer in order to do what you need an add more than one transformer to a column. I came here looking for an answer to the same question and found this solution.

Doing it all via pipelines enables you to control the test/train data a lot easier to avoid leakage, and opens up more Grid Search possibilities too. I'm personally not a fan of the pandas approach in another answer for these reasons, but it would work ok still.

encoder_cat_pipeline = Pipeline([
    ('ordinal', OrdinalEncoder(categories=ord_mapping)),
    ('pass_ord', OneHotEncoder()),
])

imputer_cat_pipeline = ColumnTransformer([
    ('imp_miss', SimpleImputer(strategy='constant'), cat_columns_fill_miss),
    ('new_pipeline', encoder_cat_pipeline, cat_columns_fill_freq)
])

cat_pipeline = Pipeline([
    ('imp_cat', imputer_cat_pipeline),
])

Solution 4:

I like to use the FunctionTransformer sklearn offers instead of doing transformations directly in pandas whenever I am doing any transformations. The reason for this is now my feature transformations are more generalizable on new incoming data (e.g. suppose you win, and you need to use the same code to predict on next years data). This way you won't have to re-run your code, you can save your preprocessor and call transform. I use something like this

FE_pipeline = {

'numeric_pipe': make_pipeline(
    FunctionTransformer(lambda x: x.replace([np.inf, -np.inf], np.nan)),
    MinMaxScaler(),
    SimpleImputer(strategy='median', add_indicator=True),
    ),
'oh_pipe': make_pipeline(
     FunctionTransformer(lambda x: x.astype(str)),
     SimpleImputer(strategy='constant'),
     OneHotEncoder(handle_unknown='ignore')
    )
}

Post a Comment for "Attributeerror When Using Columntransformer Into A Pipeline"