Skip to content Skip to sidebar Skip to footer

Write_pandas Snowflake Connector Function Is Not Able To Operate On Table

I am working on a python script that is designed to process some data, create a table if not exists, and truncate the table before inserting a refreshed dataset. I am using a role

Solution 1:

write_pandas() does not create the table automatically. You need to create the table by yourself if the table does not exist beforehand. For each time you run write_pandas(), it will just append the dataframe to the table you specified.

On the other hand, if you use df.to_sql(..., method=pd_writer) to write pandas dataframe into snowflake, it will create the table automatically for you, and you can use if_exists in to_sql() to specify different behaviors - append, replace, or fail - if the table already exists.

Solution 2:

I have a rather inelegant solution that gets the job done for table creation and appends, all without leaving my Jupyter.

I keep this code in my sql utility file. The get_col_types function will create a dictionary of col names and dtypes needed to create the table.

defget_col_types(df):
    
    '''
        Helper function to create/modify Snowflake tables; gets the column and dtype pair for each item in the dataframe

        
        args:
            df: dataframe to evaluate
            
    '''import numpy as np
    
    # get dtypes and convert to df
    ct = df.dtypes.reset_index().rename(columns={0:'col'})
    ct = ct.apply(lambda x: x.astype(str).str.upper()) # case matching as snowflake needs it in uppers# only considers objects at this point# only considers objects and ints at this point
    ct['col'] = np.where(ct['col']=='OBJECT', 'VARCHAR', ct['col'])
    ct['col'] = np.where(ct['col'].str.contains('DATE'), 'DATETIME', ct['col'])
    ct['col'] = np.where(ct['col'].str.contains('INT'), 'NUMERIC', ct['col'])
    ct['col'] = np.where(ct['col'].str.contains('FLOAT'), 'FLOAT', ct['col'])
    
    # get the column dtype pair
    l = []
    for index, row in ct.iterrows():
        l.append(row['index'] + ' ' + row['col'])
    
    string = ', '.join(l) # convert from list to a string object
    
    string = string.strip()
    
    return string


defcreate_table(table, action, col_type, df):
    
    '''
        Function to create/replace and append to tables in Snowflake
        
        args:
            table: name of the table to create/modify
            action: whether do the initial create/replace or appending; key to control logic
            col_type: string with column name associated dtype, each pair separated by a comma; comes from get_col_types() func
            df: dataframe to load
            
        dependencies: function get_col_types(); helper function to get the col and dtypes to create a table
    '''import pandas as pd
    import snowflake.connector as snow
    from snowflake.connector.pandas_tools import write_pandas  
    from snowflake.connector.pandas_tools import pd_writer
   
    database=database
    warehouse=warehouse
    schema=schema
    
    # set up connection
    conn = snow.connect(
               account = ACCOUNT,
               user = USER,
               password = PW,
               warehouse = warehouse,
               database = database,
               schema = schema,
               role = ROLE)    

    # set up cursor
    cur = conn.cursor()
    
    if action=='create_replace':
    
        # set up execute
        cur.execute(
            """ CREATE OR REPLACE TABLE 
            """ + table +"""(""" + col_type + """)""") 

        #prep to ensure proper case
        df.columns = [col.upper() for col in df.columns]

        # write df to table
        write_pandas(conn, df, table.upper())
        
    elif action=='append':
        
        # convert to a string list of tuples
        df = str(list(df.itertuples(index=False, name=None)))
        # get rid of the list elements so it is a string tuple list
        df = df.replace('[','').replace(']','')
        
        # set up execute
        cur.execute(
            """ INSERT INTO """ + table + """
                VALUES """ + df + """

            """)  

Working example:

# create df
l1 = ['cats','dogs','frogs']   
l2 = [10, 20, 30]
df = pd.DataFrame(zip(l1,l2), columns=['type','age'])
col_type = get_col_types(df)
create_table('table_test', 'create_replace', col_type, df)

# now that the table is created, append to it
l1 = ['cow','cricket']   
l2 = [45, 20]
df2 = pd.DataFrame(zip(l1,l2), columns=['type','age'])
append_table('table_test', 'append', None, df2)
  

Solution 3:

Windows 10, Python 3.9.4, Snowflake-Connector-Python 2.4.2, Pandas 1.1.5

  • I have same problem with write_pandas function.

  • I have accountadmin privileges on Snowflake. Python code and error traceback are enclosed below.

  • However, if I were to explicitly write a CSV file, I can upload the data from the CSV file by using the two functions:

  1. "put file://" (into Snowflake staging) and
  2. "copy into from" (Snowflake staging).

So, it's definitely something with write_pandas function.

```import pandas as pd
```import snowflake.connector
```...
```from snowflake.connector.pandas_tools import write_pandas
```conn = snowflake.connector.connect(
```        user=strSnowflakeUserLogin,
```        password=strSnowflakeUserPassword,
```        account=strSnowflakeAccount,
```        role=strSnowflakeUserRole,
```        warehouse=strSnoflakeWarehouse,
```        database=strSnowflakeDatabase,
```        schema=strSnowflakeSchema
```        )

Traceback (most recent call last):
  File "myPython.py", line xxx, in <module> myPythonModule()
    write_pandas(conn, df, strSnowflakeTable)
  File "C:\Users\<username>\AppData\Local\Programs\Python\Python39\lib\site-packages\snowflake\connector\pandas_tools.py", line 197, in write_pandas
    copy_results = cursor.execute(copy_into_sql, _is_internal=True).fetchall()
  File "C:\Users\<username>\AppData\Local\Programs\Python\Python39\lib\site-packages\snowflake\connector\cursor.py", line 692, in execute
    Error.errorhandler_wrapper(
  File "C:\Users\<username>\AppData\Local\Programs\Python\Python39\lib\site-packages\snowflake\connector\errors.py", line 258, in errorhandler_wrapper
    cursor.errorhandler(connection, cursor, error_class, error_value)
  File "C:\Users\<username>\AppData\Local\Programs\Python\Python39\lib\site-packages\snowflake\connector\errors.py", line 188, in default_errorhandler
    raise error_class(
snowflake.connector.errors.ProgrammingError: 001757 (42601): SQL compilation error:
Table 'mySnowflakeTable' does not exist

```...
```write_pandas(conn, df, strSnowflakeTable)

Solution 4:

@Christopher solution was very helpful for making this a repeatable/dynamic process.

I updated the get_col_types function a little, but same performance.

def get_col_types(df) ->str:
    '''
        Helper function to create/modify Snowflake tables; gets the column and dtypepairforeach item in the dataframe
        
        Args:
            df: dataframe to evaluate
        
        Returns:
            String with the formated column name and the converted snowflake data type.
            Example: 'COL_A FLOAT, COL_B DATETIME, COL_C FLOAT, COL_D NUMERIC, COL_E VARCHAR'        
    '''
        
    import numpy as np
    
    # Get dtypes and convert to df
    df_col_types = df.dtypes.reset_index()
    df_col_types = df_col_types.rename(columns={'index': 'col_name', 0:'dtype'})
    df_col_types = df_col_types.apply(lambda x: x.astype(str).str.upper()) # Case matching as snowflake needs it in uppers
        
    # Create the mapping from Dataframe types to Snowflake data types
    df_col_types['dtype'] = np.where(df_col_types['dtype']=='OBJECT', 'VARCHAR', df_col_types['dtype'])
    df_col_types['dtype'] = np.where(df_col_types['dtype'].str.contains('DATE'), 'DATETIME', df_col_types['dtype'])
    df_col_types['dtype'] = np.where(df_col_types['dtype'].str.contains('INT'), 'NUMERIC', df_col_types['dtype'])
    df_col_types['dtype'] = np.where(df_col_types['dtype'].str.contains('FLOAT'), 'FLOAT', df_col_types['dtype'])
    df_col_types['dtype'] = np.where(df_col_types['dtype'].str.contains('CATEGORY'), 'VARCHAR', df_col_types['dtype'])
    
    # Get the column dtypepairs
    df_col_types['dtype_pairs'] = df_col_types.apply(lambda row: row['col_name'] + " " + row['dtype'], axis = 1)
    col_type_pair_str = ' '.join(df_col_types['dtype_pairs'])

    return col_type_pair_str

Post a Comment for "Write_pandas Snowflake Connector Function Is Not Able To Operate On Table"