Write_pandas Snowflake Connector Function Is Not Able To Operate On Table
Solution 1:
write_pandas()
does not create the table automatically. You need to create the table by yourself if the table does not exist beforehand. For each time you run write_pandas()
, it will just append the dataframe to the table you specified.
On the other hand, if you use df.to_sql(..., method=pd_writer)
to write pandas dataframe into snowflake, it will create the table automatically for you, and you can use if_exists
in to_sql()
to specify different behaviors - append, replace, or fail - if the table already exists.
Solution 2:
I have a rather inelegant solution that gets the job done for table creation and appends, all without leaving my Jupyter.
I keep this code in my sql utility file. The get_col_types function will create a dictionary of col names and dtypes needed to create the table.
defget_col_types(df):
'''
Helper function to create/modify Snowflake tables; gets the column and dtype pair for each item in the dataframe
args:
df: dataframe to evaluate
'''import numpy as np
# get dtypes and convert to df
ct = df.dtypes.reset_index().rename(columns={0:'col'})
ct = ct.apply(lambda x: x.astype(str).str.upper()) # case matching as snowflake needs it in uppers# only considers objects at this point# only considers objects and ints at this point
ct['col'] = np.where(ct['col']=='OBJECT', 'VARCHAR', ct['col'])
ct['col'] = np.where(ct['col'].str.contains('DATE'), 'DATETIME', ct['col'])
ct['col'] = np.where(ct['col'].str.contains('INT'), 'NUMERIC', ct['col'])
ct['col'] = np.where(ct['col'].str.contains('FLOAT'), 'FLOAT', ct['col'])
# get the column dtype pair
l = []
for index, row in ct.iterrows():
l.append(row['index'] + ' ' + row['col'])
string = ', '.join(l) # convert from list to a string object
string = string.strip()
return string
defcreate_table(table, action, col_type, df):
'''
Function to create/replace and append to tables in Snowflake
args:
table: name of the table to create/modify
action: whether do the initial create/replace or appending; key to control logic
col_type: string with column name associated dtype, each pair separated by a comma; comes from get_col_types() func
df: dataframe to load
dependencies: function get_col_types(); helper function to get the col and dtypes to create a table
'''import pandas as pd
import snowflake.connector as snow
from snowflake.connector.pandas_tools import write_pandas
from snowflake.connector.pandas_tools import pd_writer
database=database
warehouse=warehouse
schema=schema
# set up connection
conn = snow.connect(
account = ACCOUNT,
user = USER,
password = PW,
warehouse = warehouse,
database = database,
schema = schema,
role = ROLE)
# set up cursor
cur = conn.cursor()
if action=='create_replace':
# set up execute
cur.execute(
""" CREATE OR REPLACE TABLE
""" + table +"""(""" + col_type + """)""")
#prep to ensure proper case
df.columns = [col.upper() for col in df.columns]
# write df to table
write_pandas(conn, df, table.upper())
elif action=='append':
# convert to a string list of tuples
df = str(list(df.itertuples(index=False, name=None)))
# get rid of the list elements so it is a string tuple list
df = df.replace('[','').replace(']','')
# set up execute
cur.execute(
""" INSERT INTO """ + table + """
VALUES """ + df + """
""")
Working example:
# create df
l1 = ['cats','dogs','frogs']
l2 = [10, 20, 30]
df = pd.DataFrame(zip(l1,l2), columns=['type','age'])
col_type = get_col_types(df)
create_table('table_test', 'create_replace', col_type, df)
# now that the table is created, append to it
l1 = ['cow','cricket']
l2 = [45, 20]
df2 = pd.DataFrame(zip(l1,l2), columns=['type','age'])
append_table('table_test', 'append', None, df2)
Solution 3:
Windows 10, Python 3.9.4, Snowflake-Connector-Python 2.4.2, Pandas 1.1.5
I have same problem with write_pandas function.
I have accountadmin privileges on Snowflake. Python code and error traceback are enclosed below.
However, if I were to explicitly write a CSV file, I can upload the data from the CSV file by using the two functions:
- "put file://" (into Snowflake staging) and
- "copy into from" (Snowflake staging).
So, it's definitely something with write_pandas function.
```import pandas as pd
```import snowflake.connector
```...
```from snowflake.connector.pandas_tools import write_pandas
```conn = snowflake.connector.connect(
``` user=strSnowflakeUserLogin,
``` password=strSnowflakeUserPassword,
``` account=strSnowflakeAccount,
``` role=strSnowflakeUserRole,
``` warehouse=strSnoflakeWarehouse,
``` database=strSnowflakeDatabase,
``` schema=strSnowflakeSchema
``` )
Traceback (most recent call last):
File "myPython.py", line xxx, in <module> myPythonModule()
write_pandas(conn, df, strSnowflakeTable)
File "C:\Users\<username>\AppData\Local\Programs\Python\Python39\lib\site-packages\snowflake\connector\pandas_tools.py", line 197, in write_pandas
copy_results = cursor.execute(copy_into_sql, _is_internal=True).fetchall()
File "C:\Users\<username>\AppData\Local\Programs\Python\Python39\lib\site-packages\snowflake\connector\cursor.py", line 692, in execute
Error.errorhandler_wrapper(
File "C:\Users\<username>\AppData\Local\Programs\Python\Python39\lib\site-packages\snowflake\connector\errors.py", line 258, in errorhandler_wrapper
cursor.errorhandler(connection, cursor, error_class, error_value)
File "C:\Users\<username>\AppData\Local\Programs\Python\Python39\lib\site-packages\snowflake\connector\errors.py", line 188, in default_errorhandler
raise error_class(
snowflake.connector.errors.ProgrammingError: 001757 (42601): SQL compilation error:
Table 'mySnowflakeTable' does not exist
```...
```write_pandas(conn, df, strSnowflakeTable)
Solution 4:
@Christopher solution was very helpful for making this a repeatable/dynamic process.
I updated the get_col_types function a little, but same performance.
def get_col_types(df) ->str:
'''
Helper function to create/modify Snowflake tables; gets the column and dtypepairforeach item in the dataframe
Args:
df: dataframe to evaluate
Returns:
String with the formated column name and the converted snowflake data type.
Example: 'COL_A FLOAT, COL_B DATETIME, COL_C FLOAT, COL_D NUMERIC, COL_E VARCHAR'
'''
import numpy as np
# Get dtypes and convert to df
df_col_types = df.dtypes.reset_index()
df_col_types = df_col_types.rename(columns={'index': 'col_name', 0:'dtype'})
df_col_types = df_col_types.apply(lambda x: x.astype(str).str.upper()) # Case matching as snowflake needs it in uppers
# Create the mapping from Dataframe types to Snowflake data types
df_col_types['dtype'] = np.where(df_col_types['dtype']=='OBJECT', 'VARCHAR', df_col_types['dtype'])
df_col_types['dtype'] = np.where(df_col_types['dtype'].str.contains('DATE'), 'DATETIME', df_col_types['dtype'])
df_col_types['dtype'] = np.where(df_col_types['dtype'].str.contains('INT'), 'NUMERIC', df_col_types['dtype'])
df_col_types['dtype'] = np.where(df_col_types['dtype'].str.contains('FLOAT'), 'FLOAT', df_col_types['dtype'])
df_col_types['dtype'] = np.where(df_col_types['dtype'].str.contains('CATEGORY'), 'VARCHAR', df_col_types['dtype'])
# Get the column dtypepairs
df_col_types['dtype_pairs'] = df_col_types.apply(lambda row: row['col_name'] + " " + row['dtype'], axis = 1)
col_type_pair_str = ' '.join(df_col_types['dtype_pairs'])
return col_type_pair_str
Post a Comment for "Write_pandas Snowflake Connector Function Is Not Able To Operate On Table"