Argmax Of Each Row Or Column In Scipy Sparse Matrix
Solution 1:
I would suggest studying the code for
moo._min_or_max_axis
where moo
is a coo_matrix
.
mat = mat.tocsc() # for axis=0
mat.sum_duplicates()
major_index, value = mat._minor_reduce(min_or_max)
not_full = np.diff(mat.indptr)[major_index] < N
value[not_full] = min_or_max(value[not_full], 0)
mask = value != 0
major_index = np.compress(mask, major_index)
value = np.compress(mask, value)
return coo_matrix((value, (np.zeros(len(value)), major_index)),
dtype=self.dtype, shape=(1, M))
Depending on the axis it prefers to work with csc over csr. I haven't had time analyze this, but I'm guessing it should be possible to include argmax
in the calculation.
This suggestion may not work. The key is the mat._minor_reduce
method, which does, with some refinement:
ufunc.reduceat(mat.data, mat.indptr[:-1])
That is is applies the ufunc
to blocks of the matrix data
array, using the indptr
to define the blocks. np.sum
, np.maxiumum
are ufunc
where this works. I don't know of an equivalent argmax
ufunc.
In general if you want to do things by 'row' for a csr matrix (or col of csc), you either have to iterate over the rows, which is relatively expensive, or use this ufunc.reduceat
to do the same thing over the flat mat.data
vector.
group argmax/argmin over partitioning indices in numpy
tries to perform a argmax.reduceat
. The solution there might be adaptable to a sparse matrix.
Solution 2:
From scipy version 0.19, both csr_matrix
and csc_matrix
support argmax()
and argmin()
methods.
Solution 3:
If A
is your scipy.sparse.coo_matrix
, then you get the row and column of the maximum value as follows:
I=A.data.argmax()
maxrow = A.row[I]
maxcol=A.col[I]
To get the index of maximum value on each row see the EDIT below:
from scipy.sparse import coo_matrix
import numpy as np
row = np.array([0, 3, 1, 0])
col = np.array([0, 2, 3, 2])
data = np.array([-3, 4, 11, -7])
A= coo_matrix((data, (row, col)), shape=(4, 4))
print A.toarray()
nrRows=A.shape[0]
maxrowind=[]
for i in range(nrRows):
r = A.getrow(i)# r is 1xA.shape[1] matrix
maxrowind.append( r.indices[r.data.argmax()] if r.nnz else0)
print maxrowind
r.nnz
is the the count of explicitly-stored values (i.e. nonzero values)
Solution 4:
The latest release of the numpy_indexed package (disclaimer: I am its author) can solve this problem in an efficient and elegant manner:
import numpy_indexed as npi
col, argmax = group_by(coo.col).argmax(coo.data)
row = coo.row[argmax]
Here we group by col, so its the argmax over the columns; swapping row and col will give you the argmax over the rows.
Solution 5:
Expanding on the answers from @hpaulj and @joeln and using code from group argmax/argmin over partitioning indices in numpy as suggested, this function will calculate argmax over columns for CSR or argmax over rows for CSC:
import numpy as np
import scipy.sparse as sp
defcsr_csc_argmax(X, axis=None):
is_csr = isinstance(X, sp.csr_matrix)
is_csc = isinstance(X, sp.csc_matrix)
assert( is_csr or is_csc )
assert( not axis or (is_csr and axis==1) or (is_csc and axis==0) )
major_size = X.shape[0if is_csr else1]
major_lengths = np.diff(X.indptr) # group_lengths
major_not_empty = (major_lengths > 0)
result = -np.ones(shape=(major_size,), dtype=X.indices.dtype)
split_at = X.indptr[:-1][major_not_empty]
maxima = np.zeros((major_size,), dtype=X.dtype)
maxima[major_not_empty] = np.maximum.reduceat(X.data, split_at)
all_argmax = np.flatnonzero(np.repeat(maxima, major_lengths) == X.data)
result[major_not_empty] = X.indices[all_argmax[np.searchsorted(all_argmax, split_at)]]
return result
It returns -1 for the argmax of any rows (CSR) or columns (CSC) that are completely sparse (i.e., that are completely zero after X.eliminate_zeros()
).
Post a Comment for "Argmax Of Each Row Or Column In Scipy Sparse Matrix"