Multiprocess Plotting In Matplotlib
How can one visualize data using matplotlib by a function in parallel? I.e. I want to create figures in parallel processes and then display them in the main process. Here is an exa
Solution 1:
The linked question's answer hides the start of the code in a if __name__ == "__main__":
clause. Hence the following should work here.
import pandas as pd
import matplotlib.pyplot as plt
import multiprocessing
#multiprocessing.freeze_support() # <- may be required on windows
df = pd.DataFrame(data={'i':['A','A','B','B'],
'x':[1.,2.,3.,4.],
'y':[1.,2.,3.,4.]})
df.set_index('i', inplace=True)
df.sort_index(inplace=True)
# function which creates a figure from the data
def Draw(df, i):
fig, ax = plt.subplots()
df = df.loc[i,:]
ax.scatter(df['x'], df['y'])
plt.show()
# creating figures in parallel
args = [(df,'A'), (df,'B')]
def multiP():
for a in args:
p = multiprocessing.Process(target=Draw, args=a)
p.start()
if __name__ == "__main__":
multiP()
Post a Comment for "Multiprocess Plotting In Matplotlib"