Strange Error During Conversion From Panda Dataframe To Numpy Array
I have a pandas dataframe with two columns: 'review'(text) and 'sentiment'(1/0) X_train = df.loc[0:25000, 'review'].values y_train = df.loc[0:25000, 'sentiment'].values X_test = df
Solution 1:
The df.loc
is label based, i.e. it includes the upper bound. Use iloc
:
df.iloc[:25000, 1].values # here 1is the columnof'review'for example
if you want NumPy-like slicing.
With iloc
you need to supply both rows and columns as integers or integer
slices.
Example
>>>df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})>>>df
a b
0 1 4
1 2 5
2 3 6
This is label based, i.e. upper bound inclusive:
>>> df.loc[:1, 'a']0112Name: a, dtype: int64
This works like slicing in NumPy, i.e. upper bound exclusive:
>>> df.iloc[:2, 0]0112Name: a, dtype: int64
Post a Comment for "Strange Error During Conversion From Panda Dataframe To Numpy Array"