How To Apply Euclidean Distance Function To A Groupby Object In Pandas Dataframe?
Solution 1:
You could pass an array of the points to scipy.spatial.distaince.pdist
and it will calculate all pair-wise distances between Xi and Xj for i>j. Then take the mean.
import numpy as np
from scipy import spatial
df.groupby('time').apply(lambda x: spatial.distance.pdist(np.array(list(zip(x.x, x.y)))).mean())
Outputs:
time01.550094110.049876253.037722
dtype: float64
Solution 2:
For me using apply or for loop does not have much different
l1=[]
l2=[]
for y,x in df.groupby('time'):
v=np.triu(spatial.distance.cdist(x[['x','y']].values, x[['x','y']].values),k=0)
v = np.ma.masked_equal(v, 0)
l2.append(np.mean(v))
l1.append(y)
pd.DataFrame({'ave':l2},index=l1)
Out[250]:
ave
01.550094110.049876253.037722
Solution 3:
building this up from the first principles:
For each point at index n, it is necessary to compute the distance with all the points with index > n.
if the distance between two points is given by formula:
np.sqrt((x0 - x1)**2 + (y0 - y1)**2)
then for an array of points in a dataframe, we can get all the distances & then calculate its mean:
distances = []
for i in range(len(df)-1):
distances += np.sqrt( (df.x[i+1:] - df.x[i])**2 + (df.y[i+1:] - df.y[i])**2 ).tolist()
np.mean(distances)
expressing the same logic using pd.concat
& a couple of helper functions
def diff_sq(x, i):
return (x.iloc[i+1:] - x.iloc[i])**2
def dist_df(x, y, i):
d_sq = diff_sq(x, i) + diff_sq(y, i)return np.sqrt(d_sq)
def avg_dist(df):
return pd.concat([dist_df(df.x, df.y, i) for i in range(len(df)-1)]).mean()
then it is possible to use the avg_dist
function with groupby
df.groupby('time').apply(avg_dist)
# outputs:time01.550094110.049876253.037722
dtype: float64
Solution 4:
You could also use the itertools
package to define your own function as follow:
import itertools
import numpy as np
def combinations(series):
l = list()
for item in itertools.combinations(series,2):
l.append(((item[0] - item[1])**2))
return l
df2 = df.groupby('time').agg(combinations)
df2['avg_distance'] = [np.mean(np.sqrt(pd.Series(df2.iloc[k,0]) +
pd.Series(df2.iloc[k,1]))) for k in range(len(df2))]
df2.avg_distance.to_frame()
Then, the output is:
avg_distance
time01.550094110.049876253.037722
Post a Comment for "How To Apply Euclidean Distance Function To A Groupby Object In Pandas Dataframe?"